q-cube enumerator polynomial of Fibonacci cubes
نویسندگان
چکیده
We consider a q-analogue of the cube polynomial of Fibonacci cubes. These bivariate polynomials satisfy a recurrence relation similar to the standard one. They refine the count of the number of hypercubes of a given dimension in Fibonacci cubes by keeping track of the distances of the hypercubes to the all 0 vertex. For q = 1, they specialize to the standard cube polynomials. We also investigate the divisibility properties of the q-analogues and show that the quotient polynomials for the appropriate indices have nonnegative integral polynomials in q as coefficients. These results have many corollaries which include expressions involving the q-analogues of the Fibonacci numbers themselves and their convolutions as they relate to hypercubes in Fibonacci cubes. Many of our developments can be viewed as refinements of enumerative results given by Klavžar and Mollard in (2012). © 2017 Elsevier B.V. All rights reserved.
منابع مشابه
Cube polynomial of Fibonacci and Lucas cubes
The cube polynomial of a graph is the counting polynomial for the number of induced k-dimensional hypercubes (k ≥ 0). We determine the cube polynomial of Fibonacci cubes and Lucas cubes, as well as the generating functions for the sequences of these cubes. Several explicit formulas for the coefficients of these polynomials are obtained, in particular they can be expressed with convolved Fibonac...
متن کاملThe (non-)existence of perfect codes in Lucas cubes
A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...
متن کاملParallel Lagrange Interpolation on Extended Fibonacci Cubes
In this paper is presented a parallel algorithm for computing a Lagrange interpolation on a Extended Fibonacci Cube EFC 1(n).The algorithm consists of three phases: initialisation phase, main phase in wich the Lagrange polynomials are computed and final phase in wich the terms of the interpolation formula are added together.
متن کاملWiener Index and Hosoya Polynomial of Fibonacci and Lucas Cubes
In the language of mathematical chemistry, Fibonacci cubes can be defined as the resonance graphs of fibonacenes. Lucas cubes form a symmetrization of Fibonacci cubes and appear as resonance graphs of cyclic polyphenantrenes. In this paper it is proved that the Wiener index of Fibonacci cubes can be written as the sum of products of four Fibonacci numbers which in turn yields a closed formula f...
متن کاملGeneralized Fibonacci cubes
Generalized Fibonacci cube Qd(f) is introduced as the graph obtained from the d-cube Qd by removing all vertices that contain a given binary string f as a substring. In this notation the Fibonacci cube Γd is Qd(11). The question whether Qd(f) is an isometric subgraph of Qd is studied. Embeddable and nonembeddable infinite series are given. The question is completely solved for strings f of leng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 226 شماره
صفحات -
تاریخ انتشار 2017